功能测试

1=k=φ^(ω+2kπ)2=k=φ^(2ω+2kπ)2=k=φ^(2(ω+kπ))2=k=H(ω+kπ)φ^(ω+kπ)2=k=H(ω+2kπ)φ^(ω+2kπ)2+k=H(ω+(2k+1)π)φ^(ω+(2k+1)π)2=H(ω)2k=φ^(ω+2kπ)2+H(ω+π)2k=φ^(ω+(2k+1)π)2=H(ω)2+H(ω+π)2\begin{split} 1&=\sum_{k=-\infty}^\infty\mid \hat{\varphi}(\omega+2k\pi)\mid^2\\ &=\sum_{k=-\infty}^\infty\mid \hat{\varphi}(2\omega+2k\pi)\mid^2\\ &=\sum_{k=-\infty}^\infty\mid \hat{\varphi}(2(\omega+k\pi))\mid^2\\ &=\sum_{k=-\infty}^\infty\mid H(\omega+k\pi)\hat{\varphi}(\omega+k\pi)\mid^2\\ &=\sum_{k=-\infty}^\infty\mid H(\omega+2k\pi)\hat{\varphi}(\omega+2k\pi)\mid^2+ \sum_{k=-\infty}^\infty\mid H(\omega+(2k+1)\pi)\hat{\varphi}(\omega+(2k+1)\pi)\mid^2\\ &=\mid H(\omega)\mid^2\sum_{k=-\infty}^\infty\mid \hat{\varphi}(\omega+2k\pi)\mid^2+ \mid H(\omega+\pi)\mid^2\sum_{k=-\infty}^\infty\mid \hat{\varphi}(\omega+(2k+1)\pi)\mid^2\\ &=\mid H(\omega)\mid^2+\mid H(\omega+\pi)\mid^2 \end{split}


graph LR
	id1[变频器]-->id2[AC-DC-AC 间接变换]
	id1-->id3[AC-AC 直接变换]-->id4[晶闸管 相控 Cycloconverter]
	id3-->id5[全控器件 斩波]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 一维数组
- AAA
- BBB
- CCC

key:[AAA,BBB,CCC]

# 多维数组
companies:
-
id: 1
name: company1
price: 200W
-
id: 2
name: company2
price: 500W

# 流式表示(Flow)
companies: [{id: 1,name: company1,price: 200W},{id: 2,name: company2,price: 500W}]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
typedef struct {
int buffer[SIZE];
int head;
int tail;
int count;
} CircularBuffer;

void push(CircularBuffer *cb, int data) {
if (cb->count < SIZE) {
cb->buffer[cb->head] = data;
cb->head = (cb->head + 1) % SIZE;
cb->count++;
}
}

int pop(CircularBuffer *cb) {
if (cb->count > 0) {
int data = cb->buffer[cb->tail];
cb->tail = (cb->tail + 1) % SIZE;
cb->count--;
return data;
}
return -1; // Buffer is empty
}
1
#define SEC_YEAR  (365*24*60*60)UL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#define MIN(a,b)  ((a)<=(b)?(a):(b))

least = MIN(*p++, b); // 指针p会做两次自增操作

// 消除副作用
#define min_i(x,y) ((x)<=(y)?(x):(y)) //(1)
#define min_t(type,x,y) ({type _x = x;\ //(2)
type _y = y;\
_x<_y?_x:_y;\
})
#define min(x,y) {const typeof(x) _x = (x);\ //(3)
const typeof(y) _y = (y);\
(void)(&_x=&_y);\ //(4)
_x<_y?_x:_y;\
})